Задания по теме «Точки экстремума функции»
Открытый банк заданий по теме точки экстремума функции. Задания B12 из ЕГЭ по математике (профильный уровень)
Открытый банк заданий по теме точки экстремума функции. Задания B12 из ЕГЭ по математике (профильный уровень)
Найдите наибольшее значение функции y=(7x^2-56x+56)e^x на отрезке [-3; 2].
Найдём производную исходной функции по формуле производной произведения y'= (7x^2-56x+56)'e^x\,+ (7x^2-56x+56)\left(e^x\right)'= (14x-56)e^x+(7x^2-56x+56)e^x= (7x^2-42x)e^x= 7x(x-6)e^x. Вычислим нули производной: y'=0;
7x(x-6)e^x=0,
x_1=0, x_2=6.
Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.
Из рисунка видно, что на отрезке [-3; 0] исходная функция возрастает, а на отрезке [0; 2] — убывает. Таким образом, наибольшее значение на отрезке [-3; 2] достигается при x=0 и равно y(0)= 7\cdot 0^2-56\cdot 0+56=56.
Найдите наибольшее значение функции y=12x-12tg x-18 на отрезке \left[0;\,\frac{\pi}{4}\right].
Найдём производную исходной функции:
y'= (12x)'-12(tg x)'-(18)'= 12-\frac{12}{\cos ^2x}= \frac{12\cos ^2x-12}{\cos ^2x}\leqslant0. Значит, исходная функция является невозрастающей на рассматриваемом промежутке и принимает наибольшее значение на левом конце отрезка, то есть при x=0. Наибольшее значение равно y(0)= 12\cdot 0-12 tg (0)-18= -18.
Найдите точку минимума функции y=(x+8)^2e^{x+52}.
Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:
y'(x)= \left((x+8)^2\right)'e^{x+52}+(x+8)^2\left(e^{x+52}\right)'= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.
Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x. y'=0 при x=-8, x=-10.
Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.
Найдите точку максимума функции y=8x-\frac23x^\tfrac32-106.
ОДЗ: x \geqslant 0. Найдём производную исходной функции:
y'=8-\frac23\cdot\frac32x^\tfrac12=8-\sqrt x.
Вычислим нули производной:
8-\sqrt x=0;
\sqrt x=8;
x=64.
Расставим знаки производной и определим промежутки монотонности исходной функции.
Из рисунка видно, что точка x=64 является единственной точкой максимума заданной функции.
Найдите наименьшее значение функции y=5x^2-12x+2\ln x+37 на отрезке \left[\frac35; \frac75\right].
ОДЗ: x>0.
Найдём производную исходной функции:
y'(x)= 10x-12+\frac{2}{x}= \frac{10x^2-12x+2}{x}.
Определим нули производной: y'(x)=0;
\frac{10x^2-12x+2}{x}=0,
5x^2-6x+1=0,
x_{1,2}= \frac{3\pm\sqrt{3^2-5\cdot1}}{5}= \frac{3\pm2}{5},
x_1=\frac15\notin\left[\frac35; \frac75\right],
x_2=1\in\left[\frac35; \frac75\right].
Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.
Из рисунка видно, что на отрезке \left[\frac35; 1\right]исходная функция убывает, а на отрезке \left[1; \frac75\right]возрастает. Таким образом, наименьшее значение на отрезке \left[\frac35; \frac75\right]достигается при x=1 и равно y(1)= 5\cdot 1^2-12\cdot 1+2 \ln 1+37= 30.
Найдите наибольшее значение функции y=(x+4)^2(x+1)+19 на отрезке [-5; -3].
Найдём производную исходной функции, используя формулу производной произведения:
y'= \left((x+4)^2\right)'(x+1)+(x+4)^2(x+1)'= (19)'= 2(x+ 4)(x+1)+(x+4)^2= (x+4)(2x+2+x+4)= (x+4)(3x+6)= 3(x+4)(x+2).
Отыщем нули производной: y'(x)=0;
(x+4)(x+2)=0;
x_1=-4, x_2=-2.
Расставим знаки производной и определим промежутки монотонности исходной функции.
Из рисунка видно, что на отрезке [-5; -4] исходная функция возрастает, а на отрезке [-4; -3] убывает. Таким образом, наибольшее значение на отрезке [-5; -3] достигается при x=-4 и равно y(-4)= (-4+4)^2(-4+1)+19= 19.
Найдите точки минимума функции y=\sqrt{x^2+60x+1000}.
Область определения: x^2+60x+1000 \geqslant 0;
x^2 +2\cdot30x+30^2+(1000-30^2)= (x+30)^2+100>0 для всех вещественных значений x. Заметим, что функция y=\sqrt t строго возрастает на множестве t\geqslant0. Отсюда точка минимума исходной функции совпадёт с точкой минимума x_0 функции x^2+60x+1000. Точка минимума квадратичной функции с положительным старшим коэффициентом совпадает с абсциссой вершины соответствующей параболы. Вершина параболы имеет абсциссу x_0=-\frac{60}{2\cdot1}=-30.
Найдите наименьшее значение функции y=(5x^2-70x+70)e^{x-12} на отрезке [10; 15].
Найдём производную исходной функции по формуле производной произведения
y'= (5x^2-70x+70)'e^{x-12}\,+ (5x^2-70x+70)\left(e^{x-12}\right)'= (10x-70)e^{x-12}\,+ (5x^2-70x+70)e^{x-12}= (5x^2-60x)e^{x-12}= 5x(x-12)e^{x-12}.
Вычислим нули производной: y'=0;
5x(x-12)e^{x-12}=0,
x_1=0, x_2=12.
Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.
Из рисунка видно, что на отрезке [10; 12] исходная функция убывает, а на отрезке [12; 15] — возрастает. Таким образом, наименьшее значение на отрезке [10; 15] достигается при x=12 и равно y(12)= (5\cdot 12^2-70\cdot 12+70)e^{12-12}= -50.
Найдите наименьшее значение функции y=32tg x - 32x-8\pi+103 на отрезке \left[-\frac{\pi}{4}; \frac{\pi}{4}\right].
Найдём производную исходной функции:
y'= 32(tg x)'-(32x)'-(8\pi )'+(103)'= \frac{32}{\cos ^2x}-32= \frac{32-32\cos ^2x}{\cos ^2x}\geqslant0. Значит, исходная функция является неубывающей на рассматриваемом промежутке и принимает
наименьшее значение на левом конце отрезка, то есть при x=-\frac{\pi}{4}. Наименьшее значение равно y\left(-\frac{\pi}{4}\right)= 32tg\left(-\frac{\pi}{4}\right)-32\cdot\left(-\frac{\pi}{4}\right)-8\pi+103= -32+103= 71.
Найдите точку максимума функции y=(x+3)^2e^{x-2016}.
Будем находить точку максимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:
y'(x)= \left((x+3)^2\right)'e^{x-2016}+(x+3)^2\left(e^{x-2016}\right)'= 2(x+3)e^{x-2016}+(x+3)^2e^{x-2016}= (x+3)e^{x-2016}(2+x+3)= (x+3)(x+5)e^{x-2016}.
Расставим знаки производной и определим промежутки монотонности исходной функции.
Так как e^{x-2016}>0 для любого x, то y'=0 при x=-3, x=-5.
Из рисунка видно, что функция y=(x+3)^2e^{x-2016} имеет единственную точку максимума x=-5.
Закажите обратный звонок!