Задание №1134
Условие
Найдите точку минимума функции y=(x+8)^2e^{x+52}.
Решение
Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:
y'(x)= \left((x+8)^2\right)'e^{x+52}+(x+8)^2\left(e^{x+52}\right)'= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.
Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x. y'=0 при x=-8, x=-10.
Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.
Анастасия Шульгина /