Задание №1134

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите точку минимума функции y=(x+8)^2e^{x+52}.

Показать решение

Решение

Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y'(x)= \left((x+8)^2\right)'e^{x+52}+(x+8)^2\left(e^{x+52}\right)'= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.

Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x. y'=0 при x=-8,  x=-10. 

Знаки производной и промежутки монотонности функции

Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.

Ответ

-8
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены

Анастасия Шульгина / 

2(x+8)e^{x+52} (2+x+8) Почему вы внесли 2 в скобки,ведь надо было умножать скобку на 2?