Задание №1136

Тип задания: 12
Тема: Исследование произведений

Условие

Найдите наибольшее значение функции y=(7x^2-56x+56)e^x на отрезке [-3; 2].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения y'= (7x^2-56x+56)'e^x\,+ (7x^2-56x+56)\left(e^x\right)'= (14x-56)e^x+(7x^2-56x+56)e^x= (7x^2-42x)e^x= 7x(x-6)e^x. Вычислим нули производной: y'=0;

7x(x-6)e^x=0,

x_1=0,  x_2=6.

Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.

Знаки производной и промежутки монотонности функции

Из рисунка видно, что на отрезке [-3; 0] исходная функция возрастает, а на отрезке [0; 2] — убывает. Таким образом, наибольшее значение на отрезке [-3; 2] достигается при x=0 и равно y(0)= 7\cdot 0^2-56\cdot 0+56=56.

Ответ

56
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены