Задание №1133
Условие
Найдите точку максимума функции y=8x-\frac23x^\tfrac32-106.
Решение
ОДЗ: x \geqslant 0. Найдём производную исходной функции:
y'=8-\frac23\cdot\frac32x^\tfrac12=8-\sqrt x.
Вычислим нули производной:
8-\sqrt x=0;
\sqrt x=8;
x=64.
Расставим знаки производной и определим промежутки монотонности исходной функции.
Из рисунка видно, что точка x=64 является единственной точкой максимума заданной функции.
Ответ
64
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.