Задание №1130

Тип задания: 12
Тема: Иррациональные функции

Условие

Найдите точки минимума функции y=\sqrt{x^2+60x+1000}.

Показать решение

Решение

Область определения: x^2+60x+1000 \geqslant 0;

x^2 +2\cdot30x+30^2+(1000-30^2)= (x+30)^2+100>0 для всех вещественных значений x. Заметим, что функция y=\sqrt t строго возрастает на множестве t\geqslant0. Отсюда точка минимума исходной функции совпадёт с точкой минимума x_0 функции x^2+60x+1000. Точка минимума квадратичной функции с положительным старшим коэффициентом совпадает с абсциссой вершины соответствующей параболы. Вершина параболы имеет абсциссу x_0=-\frac{60}{2\cdot1}=-30.

Ответ

-30
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены