Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Задачи на движение»

Открытый банк заданий по теме задачи на движение. Задания B11 из ЕГЭ по математике (профильный уровень)

Задание №1105

Тип задания: 11
Тема: Задачи на движение

Условие

Два велосипедиста одновременно отправились из деревни A в деревню B, расстояние между которыми 21 км. Скорость первого велосипедиста была на 3 км/ч больше скорости второго велосипедиста. Найдите скорость второго велосипедиста, если он приехал в деревню B на 10 мин позже первого. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость второго велосипедиста через x км/ч. Тогда скорость первого (x+3) км/ч, а время первого велосипедиста на прохождение всего пути \frac{21}{x+3}ч, время второго велосипедиста, затраченное на прохождение всего пути \frac{21}{x}ч. Разница во времени равна 10 мин = \frac16часа.

Составим и решим уравнение: \frac{21}{x}-\frac{21}{x+3}=\frac16,

6(21(x+3)-21x)=x(x+3),

x^2+3x-378=0,

x_1=18, x_2=-21.

Отрицательная скорость не удовлетворяет условию задачи. Скорость второго велосипедиста равна 18 км/ч.

Ответ

18
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1101

Тип задания: 11
Тема: Задачи на движение

Условие

Моторная лодка прошла против течения реки 160 км и вернулась в пункт отправления, затратив на обратный путь на 8 часов меньше времени. Известно, что в неподвижной воде лодка движется со скоростью 15 км/ч. Найдите скорость течения реки. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость течения реки через x км/ч. Тогда скорость лодки по течению реки (15 + x) км/ч, скорость лодки против течения реки (15 - x) км/ч. Время, затраченное лодкой на путь по течению реки \frac{160}{15+x} ч, время, затраченное на путь против течения реки — \frac{160}{15-x} ч.

Составим и решим уравнение:

\frac{160}{15-x}-\frac{160}{15+x}=8,

\frac{20}{15-x}-\frac{20}{15+x}=1,

20(15+x-15+x)= (15-x)(15+x),

20\cdot2x=225-x^2,

40x=225-x^2,

x^2+40x-225=0,

x_1=5, x_2=-45.

Скорость течения положительна, она равна 5 км/ч.

Ответ

5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1100

Тип задания: 11
Тема: Задачи на движение

Условие

Два мотоциклиста выехали одновременно из города A в город B, расстояние между которыми 171 км. За один час первый мотоциклист проезжает расстояние на 40 км больше второго мотоциклиста. Найдите скорость второго мотоциклиста, если он приехал в пункт В на 2,5 часа позже первого. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость второго мотоциклиста через x км/ч, тогда по условию скорость первого мотоциклиста (x + 40) км/ч. Время, затраченное на прохождение всего пути первым мотоциклистом, равно \frac{171}{x+40} ч. Время, затраченное на прохождение всего пути вторым мотоциклистом, равно \frac{171}{x} ч.

Составим и решим уравнение:

\frac{171}{x}-\frac{171}{x+40}=2,5,

171(x + 40) - 171x = 2,5x(x + 40),

171x+171\cdot40-171x = 2,5x^2 + 100x,

2,5x^2+100x-171\cdot40 =0,

x^2+40x-171\cdot16=0,

x_1 = 36, x_2 = -76.

Отрицательная скорость не удовлетворяет условию. Скорость второго мотоциклиста

36 км/ч.

Ответ

36
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1096

Тип задания: 11
Тема: Задачи на движение

Условие

По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 80 км/ч и 50 км/ч. Товарный поезд имеет длину 1100 метров. Какова длина пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минуты 6 секунд. Ответ дайте в метрах.

Показать решение

Решение

Скорость пассажирского поезда относительно товарного равна 80-50=30 (км/ч) = \frac{30000}{60} (м/мин) =500 (м/мин). Обозначим длину пассажирского поезда через x метров, тогда пассажирский поезд пройдёт мимо товарного поезда расстояние, равное (1100 + x) метров, за 3 мин 6 сек (3 мин 6 сек = 3,1 мин).

Составим и решим уравнение:

\frac{1100+x}{3,1}=500,

1100+x=500\cdot3,1,

x=1550-1100,

x=450.

Длина пассажирского поезда 450 м.

Ответ

450
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1095

Тип задания: 11
Тема: Задачи на движение

Условие

Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо семафора за 45 секунд. Найдите длину поезда в метрах.

Показать решение

Решение

Обозначим длину поезда x км. Тогда время, за которое поезд проезжает мимо семафора, равно \frac{x}{60}ч. По условию это 45 секунд, то есть \frac{45}{3600}ч.

\frac{x}{60}=\frac{45}{3600},

x=\frac{60\cdot45}{3600},

x=0,75 (км).

Длина поезда равна 750 м.

Ответ

750
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1094

Тип задания: 11
Тема: Задачи на движение

Условие

Поезд, двигаясь равномерно со скоростью 63 км/ч, проезжает мимо здания вокзала, длина которого равна 150 метров, за 1 минуту. Найдите длину поезда в метрах.

Показать решение

Решение

Обозначим длину поезда x км. Длина здания равна 150 метров, то есть 0,15 км. Путь, который поезд проехал мимо здания вокзала, равен (x+0,15) км. Время, за которое поезд проезжает мимо здания вокзала, равно \frac{x+0,15}{63}ч. По условию это 1 минута (1 мин = \frac{1}{60} часа).

оставим и решим уравнение: \frac{x+0,15}{63}=\frac{1}{60},

x=0,9 (км).

Длина поезда равна 900 м.

Ответ

900
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1093

Тип задания: 11
Тема: Задачи на движение

Условие

Из двух посёлков, расстояние между которыми 88 км, навстречу друг другу одновременно выехали два велосипедиста. Через сколько часов велосипедисты встретятся, если их скорости равны 18 км/ч и 22 км/ч?

Показать решение

Решение

Обозначим время велосипедистов до встречи через x ч. Тогда первый велосипедист до встречи проедет 18x км, а второй велосипедист проедет до встречи 22x км.

Составим и решим уравнение:

8x + 22x = 88, 40x = 88, x = 2,2.

Велосипедисты встретятся через 2,2 часа.

Ответ

2,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №945

Тип задания: 11
Тема: Задачи на движение

Условие

Теплоход проходит по течению реки до пункта назначения 221 км и после стоянки возвращается в пункт отправления. Скорость движения теплохода в воде без течения равна 15 км/ч. Стоянка длилась 7 часов. Найдите скорость течения реки, если в пункт отправления теплоход вернулся через 37 часов после отплытия из него. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость течения через x км/ч, тогда скорость теплохода по течению реки равна (15+x) км/ч, скорость теплохода против течения (15-x) км/ч. Время движения теплохода равно 37-7=30 ч.

Составим и решим уравнение:

\frac{221}{15+x}+\frac{221}{15-x}=30,

221(15-x+15+x)=30(15-x)(15+x),

221=225-x^2,

x^2=4,

x_1=2,\,x_2=-2.

Скорость течения положительна, она равна 2 км/ч.

Ответ

2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №944

Тип задания: 11
Тема: Задачи на движение

Условие

Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми 288 км. На следующий день он поехал обратно со скоростью на 6 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 4 часа. В итоге на возвращение в город A у него ушло сколько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость велосипедиста на пути от A до B через x км/ч, x>0. Тогда его скорость на обратном пути будет (x+6) км/ч. Время, затраченное велосипедистом на путь от A до B, равно \frac{288}{x}ч, время движения на обратном пути \frac{288}{x+6}ч.

Составим и решим уравнение:

\frac{288}{x}-\frac{288}{x+6}=4,

288(x+6-x)=4x(x+6),

72\cdot6=x^2+6x,

x^2+6x-432=0,

x_1=18,\,x_2=-24.

Отрицательная скорость не удовлетворяет условию задачи. Скорость велосипедиста равна 18 км/ч.

Ответ

18
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №943

Тип задания: 11
Тема: Задачи на движение

Условие

Из пункта A в пункт B одновременно выехали две дорожные машины. Первая машина проехала с постоянной скоростью весь путь. Вторая проехала первую половину пути со скоростью 39 км/ч, а вторую половину пути — со скоростью на 26 км/ч большей скорости первой машины, в результате чего в пункт B обе машины прибыли одновременно. Найдите скорость первой машины. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость первой машины через x км/ч, путь от A до B s км, тогда путь от пункта A в пункт B она пройдёт за \frac sxч. Половина пути пройдена второй машиной со скоростью 39 км/ч за \frac{0,5s}{39}=\frac{s}{78}ч. Скорость второй машины на второй половине пути равна (x+26) км/ч, таким образом, время, затраченное на вторую половину пути второй машиной, равно \frac{0,5s}{x+26}ч.

Составим и решим уравнение:

\frac sx=\frac{s}{78}+\frac{0,5s}{x+26},

\frac 2x=\frac{2}{78}+\frac{1}{x+26},

\frac 2x-\frac{1}{39}-\frac{1}{x+26}=0,

\frac{2\cdot39(x+26)-x(x+26)-39x}{39x(x+26)}=0,

78x+39\cdot52-x^2-26x-39x=0,

x^2-13x-39\cdot52=0,

x_1=52,\,x_2=-39.

Отрицательная скорость не удовлетворяет условию. Скорость первой машины 52 км/ч.

Ответ

52
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.