Задание №944
Условие
Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми 288 км. На следующий день он поехал обратно со скоростью на 6 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 4 часа. В итоге на возвращение в город A у него ушло сколько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.
Решение
Обозначим скорость велосипедиста на пути от A до B через x км/ч, x>0. Тогда его скорость на обратном пути будет (x+6) км/ч. Время, затраченное велосипедистом на путь от A до B, равно \frac{288}{x}ч, время движения на обратном пути \frac{288}{x+6}ч.
Составим и решим уравнение:
\frac{288}{x}-\frac{288}{x+6}=4,
288(x+6-x)=4x(x+6),
72\cdot6=x^2+6x,
x^2+6x-432=0,
x_1=18,\,x_2=-24.
Отрицательная скорость не удовлетворяет условию задачи. Скорость велосипедиста равна 18 км/ч.