Задания по теме «Пирамида»
Открытый банк заданий по теме пирамида. Задания B8 из ЕГЭ по математике (профильный уровень)
Открытый банк заданий по теме пирамида. Задания B8 из ЕГЭ по математике (профильный уровень)
Объём правильной четырёхугольной пирамиды SABCD равен 16. Точка E — середина ребра SB. Найдите объём пирамиды EABC.
На рисунке SO является высотой пирамиды ABCD, EK является перпендикуляром к плоскости ABCD (значит, EK является высотой пирамиды EABC), поэтому
EK\parallel SO и SO и EK лежат в одной плоскости SOB.
Так как E является серединой SB, то EK является средней линией треугольника SOB, значит, EK = \frac12SO. Пусть SO = H, тогда EK = \frac12 H. Заметим также, что S_{ABC} = \frac12 S_{ABCD}. Тогда V_{EABC}= \frac13 S_{ABC}\cdot\frac{H}{2}= \frac13\cdot\frac12 S_{ABCD}\cdot\frac{H}{2}= \frac14\cdot\frac13 S_{ABCD}\cdot H= \frac14 V_{SABCD}. Следовательно, V_{EABC}=\frac14\cdot16=4.
Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60^{\circ}. Высота пирамиды равна 9. Найдите объём пирамиды.
Объём пирамиды вычисляется по формуле V = \frac13\cdot Sосн.· h, где Sосн. — площадь основания, а h — высота пирамиды, равная 9. На рисунке, приведённом в условии задачи, SH — высота пирамиды и HG\perp BC. Покажем, что угол SAH является линейным углом двугранного угла между плоскостью ABS и плоскостью основания ABC, которые пересекаются по прямой AB. AH\perp AB, так как основание призмы является прямоугольником. AH является проекцией наклонной AS. Тогда по теореме о трех перпендикулярах AS\perp AB. Отсюда \frac{SH}{AH}=tg60^{\circ}=\sqrt3. \frac{9}{AH}=\sqrt3, AH=\frac{9}{\sqrt3}=3\sqrt3, AD=2AH=6\sqrt3. Аналогично убеждаемся, что угол SGH равен 60^{\circ} и HG=3\sqrt3=BC. Следовательно стороны прямоугольника, лежащего в основании, равны 3\sqrt3 и 6\sqrt3. Значит V=\frac13\cdot Sосн. · h = \frac13\cdot3\sqrt3\cdot6\sqrt3\cdot9= 162.
Основанием пирамиды является прямоугольник со сторонами 6 и 8. Её объём равен 64. Найдите высоту этой пирамиды.
Объём пирамиды вычисляется по формуле V=\frac13\cdot S_{osn.} \cdot h, где S_{osn} — площадь основания, а h — высота пирамиды. Отсюда h = \frac{3V}{S_{osn.}}. Площадь основания является площадью прямоугольника со сторонами 6 и 8, поэтому S_{osn.} = 6 \cdot 8 = 48. Отсюда h = \frac{3\cdot64}{48}=4.
Боковое ребро правильной четырехугольной пирамиды равно 4, высота равна 2. Найдите объем пирамиды.
Объем пирамиды вычисляется по формуле
V=\frac13Sh
где S – площадь основания; h – высота пирамиды
Для нахождения площади, найдем диагональ квадрата основания пирамиды. Рассмотрим прямоугольный треугольник, гипотенузой которого является сторона пирамиды, а одним из катетов высота пирамиды. По теореме Пифагора диагональ будет равна:
d=2\cdot\sqrt{4^2-2^2}=2\cdot\sqrt{12}=4\sqrt{3}
Зная угол CAB = 45^{\circ} прямоугольного треугольника ABC мы можем найти сторону AB:
AB=d\cdot\cos 45^{\circ}=4\sqrt{3}\cdot \frac{1}{\sqrt{2}}=4\sqrt{3}\cdot \frac{\sqrt{2}}{2}=2\sqrt{6}
Площадь основания равна:
S = \left ( 2\sqrt{6} \right )^2=4\cdot 6=24
Объем пирамиды равен:
V = \frac13\cdot 24\cdot 2=16
Боковое ребро правильной четырехугольной пирамиды равно 7,5, а сторона основания равна 10. Найдите высоту пирамиды.
Основанием правильной четырехугольной пирамиды является квадрат. По теореме Пифагора найдем диагональ квадрата, центр которой пересекает вершина пирамиды.
d^2=10^2+10^2=200
d=10\sqrt{2}
Рассмотрим прямоугольный треугольник, в котором один катет является половиной диагонали квадрата основания пирамиды, а гипотенуза равна ее боковому ребру. По теореме Пифагора найдем второй катет, являющийся высотой пирамиды:
h^2=(7,5)^2-\left ( \frac{10\sqrt{2}}{2} \right )^2=56,25-50=6,25
h = \sqrt{6,25} = 2,5
Закажите обратный звонок!