Задания по теме «Геометрический смысл производной. Касательная к графику функции»
Открытый банк заданий по теме геометрический смысл производной. Задания B7 из ЕГЭ по математике (профильный уровень)
Открытый банк заданий по теме геометрический смысл производной. Задания B7 из ЕГЭ по математике (профильный уровень)
Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b, учитывая, что абсцисса точки касания меньше нуля.
Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.
Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}
Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.
Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.
Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y'(x_0). Но y'=-2x+5, значит, y'(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.
Получаем: x_0 = 4.
На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.
По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.
Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha ) =-tg \alpha =-\frac15=-0,2.
Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b, учитывая, что абсцисса точки касания больше нуля.
Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую
проходит касательная к этому графику.
Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y'(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}
Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.
На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.
Прямая y=6 параллельна оси Ox. Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4.
Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.
Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y'(x_0). Но y'=2x-4, значит, y'(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.
На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.
По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.
Как известно, tg \alpha и будет значением производной функции f(x) в точке x_0.
Заметим, что tg \alpha =\frac{BC}{AC}=\frac34=0,75.
Прямая y=-2x-8 является касательной к графику функции y=x^3+3x^2-11x-3. Найдите абсциссу точки касания.
Угловой коэффициент касательной к графику функции y=x^3+3x^2-11x-3 в произвольной точке x_0 равен y'(x_0). Но y'=3x^2+6x-11, значит y'(x_0)=3x_0^2+6x_0-11. Угловой коэффициент касательной y=-2x-8, указанной в условии равен -2. Поэтому находим такое значение x_0, что 3x_0^2+6x_0-11=-2, 3x_0^2+6x_0-9=0. По формулам корней квадратного уравнения получаем, что либо x_0=-3, либо x_0=1.
Заметим, что y(-3)= (-3)^3+3\cdot (-3)^2-11\cdot (-3)-3= 30, а y(1)= 1^3+3\cdot 1^2-11\cdot 1-3= -10. Получаем две возможные точки касания: (-3; 30); (1; -10). Выясним, через какую из них проходит касательная y=2x-8. Координаты точки (-3; 30) не удовлетворяют уравнению касательной, так как равенство 30=-2\cdot (-3)-8 не является верным. Но равенство -10=(-2)\cdot 1-8 является верным. Поэтому касательная проходит через точку (1, -10) с абсциссой, равной 1.
Прямая y=-2x+5 является касательной к графику функции y=ax^2+2x+7. Найдите a.
Пусть (x_0; y_0) — точка, в которой прямая y=-2x+5 касается графика функции y=ax^2+2x+7. Тогда угловой коэффициент касательной к графику функции y=ax^2+2x+7 в точке x_0 равен y'(x_0). Но y'=2ax+2, значит y'(x_0)=2ax_0+2.
Угловой коэффициент касательной y=-2x+5, указанной в условии, равен -2. Поэтому 2ax_0+2=-2. Отсюда, a \neq 0.
Кроме того точка (x_0; y_0) лежит на прямой y=-2x+5 и на графике функции y=ax^2+2x+7. Значит, выполняется равенство y_0=-2x_0+5=ax_0^2+2x_0+7. Получаем систему:
\begin{cases} 2ax_0+2=-2, \\ -2x_0+5=ax_0^2+2x_0+7; \end{cases}
\begin{cases} x_0=-\frac2a, \\ ax_0^2+4x_0+2=0; \end{cases}
a\left(-\frac2a\right)^2+4\left(-\frac2a\right)+2=0,
\frac4a-\frac8a+2=0,
\frac4a=2,
a=2;
На рисунке изображён график y=f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику функции y=f(x) параллельна оси абсцисс или совпадает с ней.
Пусть x_0 — абсцисса точки, в которой касательная к графику функции y=f(x) параллельна оси абсцисс или совпадает с ней. Тогда значение производной y=f'(x) в точке x_0 равно 0, так как угловой коэффициент оси абсцисс y=0 равен 0.
Но из графика видно, что f'(x)=0 в единственной точке x_0=-5.
Действительно, прямая y=0 пересекает график функции y=f'(x) в единственной точке (-5; 0), абсцисса которой равна -5.
Закажите обратный звонок!