Задание №1141

Условие

На рисунке изображён график y=f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику функции y=f(x) параллельна оси абсцисс или совпадает с ней.

График y=f'(x) — производной функции f(x).

Показать решение

Решение

Пусть x_0 — абсцисса точки, в которой касательная к графику функции y=f(x) параллельна оси абсцисс или совпадает с ней. Тогда значение производной y=f'(x) в точке x_0 равно 0, так как угловой коэффициент оси абсцисс y=0 равен 0.

Но из графика видно, что f'(x)=0 в единственной точке x_0=-5.

Действительно, прямая y=0 пересекает график функции y=f'(x) в единственной точке (-5; 0), абсцисса которой равна -5.

Ответ

-5
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены