Задание №332
Условие
Ремонт одной и той же квартиры Виктор и Алексей делают за 8 дней. Андрей, работая с Виктором, затрачивают на работу столько же времени. Однако, Андрею с Алексеем на ремонт требуется 12 дней. Сколько дней займет ремонт квартиры при одновременной работе всех трех мастеров?
Решение
Примем объем работы за единицу. Пусть x — количество дней, за которое необходимо выполнить всю работу Виктору; за y дней работу выполнит Алексей, Андрей выполнит всю работу за z дней; тогда \frac{1}{x} — производительность Виктора, \frac{1}{y} — производительность Алексея, \frac{1}{z} — производительность Андрея.
По первому условию Виктор и Алексей сделают всю работу за 8 дней, значит, их общая производительность \frac18. Составим уравнение \frac{1}{x}+\frac{1}{y}=\frac18.
По второму условию Виктор и Андрей сделают всю работу за 8 дней. Значит, их общая производительность \frac18. Составим уравнение \frac{1}{x}+\frac{1}{z}=\frac18.
По третьему условию Андрей и Алексей выполнят всю работу за 12 дней. Значит, их общая производительность \frac{1}{12}. Составим уравнение \frac{1}{y}+\frac{1}{z}=\frac{1}{12}.
Получим систему уравнений:
\begin{cases} \frac{1}{x}+\frac{1}{y}=\frac18,\\ \frac{1}{x}+\frac{1}{z}=\frac18,\\ \frac{1}{y}+\frac{1}{z}=\frac{1}{12}; \end{cases}
2\left( \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \right )=\frac18+\frac18+\frac{1}{12},
2\left( \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \right )=\frac13,
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac16,
1:\frac16=6 (дней).
Итак, всю работу Виктор, Алексей и Андрей сделают за 6 дней.
Ольга Яхьяева /