Задание №290

Тип задания: 6
Тема: Прямоугольный треугольник

Условие

В треугольнике ABC\:\angle C=90^{\circ}, CH — высота, BC=14,\, \sin A=0,7. Найдите BH.

Прямоугольный треугольник ABC с высотой CH

Показать решение

Решение

В прямоугольном треугольнике ABC\:\angle A=90^{\circ}-\angle B,\, \sin A=\sin(90^{\circ}-\angle B)=\cos \angle B=0,7.

В \triangle BHC\:\cos\angle B=\frac{BH}{BC}, BH=BC\cdot\cos \angle B=14\cdot0,7=9,8.

Ответ

9,8
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены