Задание №1216

Тип задания: 17
Тема: Практические задачи

Условие

Вкладчик положил две одинаковые суммы под r% годовых в банки «A» и «B». Через год условия по вкладу в банке «A» изменились и он понизил годовую ставку до 10% годовых, в то время как банк «B» оставил годовую ставку на прежнем уровне. Найдите, при каком наименьшем целом r вклад в банке «B» через 3 года будет по крайней мере на 20% больше, чем вклад в банке «A».

Показать решение

Решение

Пусть в каждый из двух банков была положена сумма S. Тогда через год в каждом из двух банков будет сумма S_1=S\cdot q, где q=1+\frac r{100}. Таким образом, начисление r% годовых соответствует умножению на коэффициент q. Тогда начисление 10% годовых соответствует умножению на коэффициент 1,1. Через 3 года на вкладе в банке «A» будет сумма S_3{(A)}=S\cdot q\cdot 1,1^2, а на вкладе в банке «B» — сумма S_3(B)=S\cdot q^{3}. По условию задачи должно выполняться, неравенство S_3(B) \geqslant S_3{(A)}\cdot 1,2,

S\cdot q^3 \geqslant S\cdot q\cdot 1,1^{2}\cdot 1,2,

q^2 \geqslant 1,21\cdot 1,2. Так как 100q — целое, то q>1,2,

q\geqslant 1,21,

1+\frac r{100} \geqslant 1,21,

r\geqslant 21.

Наименьшим целым r, удовлетворяющим неравенству, будет r=21.

Ответ

21

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены