Задание №1070

Тип задания: 6
Тема: Окружность

Условие

Через концы A и B дуги окружности с центром O проведены касательные AC и BC. Меньшая дуга AB равна 56^{\circ}. Найдите угол ACB. Ответ дайте в градусах.

Окружность с центром O и касательными

Показать решение

Решение

Центральный угол равен угловой величине дуги, на которую он опирается, то есть

\angle BOA = 56^{\circ}. Углы OBC и OAC прямые как углы между касательными и радиусами, проведёнными в точки касания. Сумма углов четырёхугольника равна 360^{\circ}, можем найти угол ACB.

\angle ACB = 360^{\circ}-56^{\circ}-90^{\circ}-90^{\circ} = 124^{\circ}.

Ответ

124
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены