Задание №916

Тип задания: 8
Тема: Призма

Условие

В правильной шестиугольной призме ABCDEFA_1B_1C_1D_1E_1F_1 все рёбра равны 2. Найдите расстояние между точками A и E_1.

Показать решение

Решение

Треугольник AEE_1 — прямоугольный, так как ребро EE_1 перпендикулярно плоскости основания призмы, прямым углом будет угол AEE_1.

Правильная шестиугольная призма

Тогда по теореме Пифагора AE_1^2 = AE^2 + EE_1^2. Найдём AE из треугольника AFE по теореме косинусов. Каждый внутренний угол правильного шестиугольника равен 120^{\circ}. Тогда AE^2= AF^2+FE^2-2\cdot AF\cdot FE\cdot\cos120^{\circ}= 2^2+2^2-2\cdot2\cdot2\cdot\left ( -\frac12 \right ).

Отсюда, AE^2=4+4+4=12,

AE_1^2=12+4=16,

AE_1=4.

Ответ

4
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены