Задание №1022
Условие
На столе перед нумизматом лежит 200 монет орлом кверху. За один ход нумизмат переворачивает любые 4 разные монеты. Разрешено так же переворачивать те монеты, которые уже переворачивались ранее.
а) Может ли в результате нескольких ходов ровно 6 монет выпасть кверху решкой?
б) Может ли в результате нескольких ходов ровно 3 монеты выпасть кверху решкой?
в) Найдите наибольшее число монет, которое может выпасть кверху решкой, если хотя бы одна монета должна в конечном итоге выпасть кверху орлом?
Решение
а) Да. Пусть в первый ход нумизмат переворачивает 4 монеты. Вторым ходом он переворачивает 3 ещё нетронутых монеты и 1 монету, которую перевернул за первый ход. Таким образом, окажется ровно 6 монет решкой кверху.
б) Нет, так как количество монет решкой кверху после каждого хода будет оставаться чётным. Изначально решкой кверху лежит 0 монет (чётное число).
Если за один ход нумизмат переворачивает 4 монеты, которые были решкой кверху, то количество монет кверху решкой уменьшится на 4.
Если за один ход нумизмат переворачивает 3 монеты кверху решкой и 1 монету кверху орлом, то количество монет кверху решкой уменьшится на 2.
Если за один ход нумизмат переворачивает 2 монеты кверху решкой и 2 монеты кверху орлом, то количество монет кверху решкой не изменяется (можно сказать «изменяется на 0»).
Если за один ход нумизмат переворачивает 1 монету кверху решкой и 3 монеты кверху орлом, то количество монет кверху решкой увеличивается на 2.
Если за один ход нумизмат переворачивает 4 монеты, которые были кверху орлом, то количество монет кверху решкой увеличивается на 4.
Таким образом, после произвольного хода количество монет кверху решкой изменяется на 4, на 2 или на 0, то есть на чётное число. Изначально количество монет кверху решкой 0 — чётное число, следовательно, их число будет оставаться четным числом и не может быть равно 3.
в) Число монет кверху решкой не должно равняться 200 (по условию) и не может равняться 199, так как число 199 — нечетно (см. решение б). Покажем, что число монет решкой кверху может равняться 198. Пусть первые 49 ходов нумизмат переворачивал только ранее нетронутые монеты. В итоге кверху решкой окажется 49 \cdot 4=196 монет. За 50-й ход нумизмат перевернет 3 монеты, которые лежали орлом кверху, и 1 монету, которая лежала кверху решкой. Кверху решкой окажется 198 монет.
Ответ
а) да; б) нет; в) 198.