Степень числа с натуральным показателем
Нижеприведенная формула будет являться определением степени с натуральным показателем (a — основание степени и повторяющийся множитель, а n — показатель степени, который показывает сколько раз повторяется множитель):
Данное выражение означает, что степень числа a с натуральным показателем n является произведением n сомножителей, при том, что каждый из множителей равняется a.
Содержание
СкрытьПоказатьПравило чтения и записи степеней с натуральным показателем
Краткую запись произведения одинаковых сомножителей очень удобно использовать, — длинная строка описания математических действий сокращается до записи нескольких шагов:
17^5=17 \cdot 17 \cdot 17 \cdot 17 \cdot 17=1\,419\,857
17 — основание степени,
5 — показатель степени,
1419857 — значение степени.
Степень с нулевым показателем равна 1, при условии, что a \neq 0:
a^0=1.
Например: 2^0=1
Когда нужно записать большое число обычно используют степень числа 10.
Например, один из самых древних динозавров на Земле жил около 280 млн. лет назад. Его возраст записывается следующим образом: 2,8 \cdot 10^8.
Каждое число большее 10 можно записать в виде a \cdot 10^n, при условии, что 1 < a < 10 и n является положительным целым числом. Такую запись называют стандартным видом числа.
Примеры таких чисел: 6978=6,978 \cdot 10^3, 569000=5,69 \cdot 10^5.
Можно говорить как и «a в n-ой степени», так и «n-ая степень числа a» и «a в степени n».
4^5 — «четыре в степени 5 » или «4 в пятой степени» или также можно сказать «пятая степень числа 4»
В данном примере 4 — основание степени, 5 — показатель степени.
Приведем теперь пример с дробями и отрицательными числами. Для избежания путаницы принято записывать основания, отличные от натуральных чисел, в скобках:
(7,38)^2, \left(\frac 12 \right)^7, (-1)^4 и др.
Заметьте также разницу:
(-5)^6 — означает степень отрицательного числа −5 с натуральным показателем 6.
-5^6 — соответствует числу противоположному 5^6.
Свойства степеней с натуральным показателем
Основное свойство степени
a^n \cdot a^k = a^{n+k}
Основание остается прежним, а складываются показатели степеней.
Например: 2^3 \cdot 2^2 = 2^{3+2}=2^5
Свойство частного степеней с одинаковыми основаниями
a^n : a^k=a^{n-k}, если n > k.
Показатели степени вычитаются, а основание остается прежним.
Данное ограничение n > k вводится для того, чтобы не выходить за рамки натуральных показателей степени. Действительно, при n > k показатель степени a^{n-k} будет являться натуральным числом, иначе он будет либо отрицательным числом (k < n), либо нулем (k-n).
Например: 2^3 : 2^2 = 2^{3-2}=2^1
Свойство возведения степени в степень
(a^n)^k=a^{nk}
Основание остается прежним, перемножаются лишь показатели степеней.
Например: (2^3)^6 = 2^{3 \cdot 6}=2^{18}
Свойство возведения в степень произведения
В степень n возводится каждый множитель.
a^n \cdot b^n = (ab)^n
Например: 2^3 \cdot 3^3 = (2 \cdot 3)^3=6^3
Свойство возведения в степень дроби
\frac{a^n}{b^n}=\left(\frac{a}{b} \right) ^n, b \neq 0
В степень возводится и числитель и знаменатель дроби. \left(\frac{2}{5} \right)^3=\frac{2^3}{5^3}=\frac{8}{125}