Целые числа
К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.
Натуральные числа — это положительные целые числа.
Содержание
СкрытьПоказатьЛатинской буквой \mathbb{Z} обозначается множество целых чисел.
К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)
Латинской буквой \mathbb{N} — обозначается множество натуральных чисел.
К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).
Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .
Арифметические действия с целыми числами
Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.
Сложение целых чисел
Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:
(+11) + (+9) = +20
Вычитание целых чисел
Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:
(-7) + (+8) = +1
Умножение целых чисел
Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+», если исходные числа были с одинаковыми знаками, и знак «−», если исходные числа были с разными знаками:
(-5) \cdot (+3) = -15
(-3) \cdot (-4) = +12
Следует запомнить следующее правило перемножения целых чисел:
+ \cdot + = +
+ \cdot - = -
- \cdot + = -
- \cdot - = +
Существует правило перемножения нескольких целых чисел. Запомним его:
Знак произведения будет «+», если количество множителей с отрицательным знаком четное и «−», если количество множителей с отрицательным знаком нечетное.
(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120
Деление целых чисел
Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+», а если знаки исходных чисел разные, то ставится знак «−».
(-25) : (+5) = -5
Свойства сложения и умножения целых чисел
Разберем основные свойства сложения и умножения для любых целых чисел a, b и c:
- a + b = b + a – переместительное свойство сложения;
- (a + b) + c = a + (b + c) – сочетательное свойство сложения;
- a \cdot b = b \cdot a – переместительное свойство умножения;
- (a \cdot c) \cdot b = a \cdot (b \cdot c) – сочетательное свойства умножения;
- a \cdot (b \cdot c) = a \cdot b + a \cdot c – распределительное свойство умножения.