Задание №1235

Тип задания: 19
Тема: Числа и их свойства

Условие

Можно ли в бесконечно убывающей последовательности 1; \frac12 ;\frac13 ;\frac14 ;\frac15 ;... выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, которые образуют арифметическую прогрессию.

Показать решение

Решение

а) Можно. Данная последовательность убывающая, поэтому будем искать убывающую прогрессию. Заметим, что последовательность \frac5n ; \frac4n ; \frac3n ; \frac2n ; \frac1n является убывающей арифметической прогрессией, её разностью является число -\frac1n. Остаётся подобрать знаменатель n таким, чтобы сократились числители. Понятно, что в качестве знаменателя n можно взять кратное всех числителей, например, число 60. Тогда получим арифметическую прогрессию \frac1{12} ;\frac1{15} ;\frac1{20} ;\frac1{30} ;\frac1{60} , удовлетворяющую условию задачи.

б) Можно. Последовательность \frac{50}n ;\frac{49}n ;...;\frac3n ;\frac2n ;\frac1n является убывающей арифметической прогрессией c разностью -\frac1n. Если в качестве знаменателя n взять число 50!=50\cdot 49\cdot ...\cdot 2\cdot 1, то после сокращения дробей получим 50 различных дробей, все числители которых равны 1, то есть получим искомую арифметическую прогрессию.

в) Нельзя. В самом деле, любая арифметическая прогрессия является линейной функцией на множестве натуральных чисел. В данном случае убывающей, значит, прямая на которой лежат точки, соответствующие членам этой прогрессии будет пересекать ось Ox. Поэтому начиная с некоторого номера все члены арифметической прогрессии станут отрицательными, а в данной последовательности нет отрицательных членов. Значит, в данной бесконечно убывающей последовательности нельзя выбрать бесконечное множество чисел, которые образуют арифметическую прогрессию.

Ответ

а) да; б) да; в) нет.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены

Андрей Григорьевых / 

я сдам профиль на 100 баллов

Алексей Жданов / 

Насколько я вижу, как бы сильно мы не увеличивали знаменатель дроби мы никогда не пересечём ось х. В виду того что увеличивается лишь знаменатель, и каким бы велик он не был, число всегда останется положительным.