Задание №1234
Условие
Существуют ли такие восемьсот различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
а) ровно в 500 раз;
б) ровно в 400 раз;
в) Найдите наименьшее возможное натуральное число, равное отношению среднего арифметического этих чисел к их наибольшему общему делителю.
Решение
а) Построим пример 800 — элементной последовательности, для которой среднее арифметическое больше НОД ровно в 500 раз. Пусть x — последнее число в последовательности 1, 2, 3,..., 799, x. Тогда, так как НОД этих чисел равен 1, то должно выполняться условие \frac{1+2+3+...+799+x}{800}= 500. Отсюда, \frac{(799+1)\cdot 799}{2}+x= 800\cdot 500; x=800\cdot 500-400\cdot 799= 400(2\cdot 500-799)=400\cdot 201=80\,400. Таким образом, искомая последовательность имеет вид 1, 2, 3,..., 798, 799, 80\,400.
б) Пусть НОД восьмисот чисел a_1 < a_2 < a_3 < ... < a_{800} равен d. Тогда a_1 \geqslant d, a_2 \geqslant 2d,..., a_{800} \geqslant 800d. Следовательно, a_1+a_2+...+a_{800} \geqslant d(1+2+3+...+800)= 400\cdot 801d, а среднее арифметическое \frac{a_1+a_2+...+a_{800}}{800}\geqslant \frac{801}2 d=400,5d. Значит, среднее арифметическое не может быть больше НОД ровно в 400 раз.
в) В предыдущем пункте для среднего арифметического последовательности a_1, a_2, a_3,..., a_{800} была получена оценка \frac{a_1+a_2+...+a_{800}}{800} \geqslant 400,5d. Значит, наименьшее натуральное число равное отношению среднего арифметического этих чисел к их НОД, не меньше чем 401. Покажем, что оно может равняться 401. Пусть d=1. Примером такой последовательности является 800 — элементная последовательность 1, 2, 3,..., 799, 1200. Её наибольший общий делитель равен 1, а среднее арифметическое \frac{1+2+3+...+799+1200}{800}= \frac{400\cdot 799+1200}{800}= \frac{400(799+3)}{800}= \frac{802}2= 401.
Ответ
а) да; б) нет; в) 401.