Задание №1228

Тип задания: 19
Тема: Числа и их свойства

Условие

Множество чисел назовём красивым, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество \{500; 501; 502;..., 599\} красивым?

б) Является ли множество \{5; 25; 125;..., 5^{100}\} красивым?

в) Сколько красивых четырёхэлементных подмножеств у множества \{1; 3; 5; 6; 7; 9; 14\}?

Показать решение

Решение

а) Разобьём множество \{500; 501; 502;...; 599\} на 50 пар, сумма чисел в каждой из которых равна 1099: \{500; 599\}, \{501; 598\},...\,.

Множество \{500; 501; 502;...; 599\} можно разбить на два подмножества, в каждом из которых по 25 таких пар. Значит, сумма в этих двух подмножествах одинакова и множество \{500; 501; 502;...; 599\} является красивым.

б) Заметим, что 5^{100} > \frac{5^{100}-1}4= 5^{99} +5^{98} +...+25+5+1. Поэтому сумма чисел в подмножестве множества \{5; 25; 125;...; 5^{100} \}, содержащем 5^{100} , всегда больше суммы остальных чисел, следовательно, множество \{5; 25; 125;...; 5^{100} \} не является красивым.

в) Заметим, что четырёхэлементное множество является красивым в двух случаях: либо одно число является суммой трёх других, либо множество содержит две пары чисел с равными суммами.

Подмножества множества \{1; 3; 5; 6; 7; 9; 14\}, удовлетворяющие первому случаю, — это \{1; 3; 5; 9\}, \{3; 5; 6; 14\}, \{1; 6; 7; 14\}.

Рассмотрим второй случай. Заметим, что сумма всех чисел красивого подмножества чётна. В исходном множестве всего два чётных числа, поэтому числа 6 и 14 либо одновременно входят в красивое четырёхэлементное подмножество, либо одновременно не входят в него. Если 6 и 14 входят в подмножество, то либо сумма двух других чисел равна 20, что невозможно, так как сумма самых больших оставшихся чисел 7+9 < 20, либо разность двух других чисел равна 8.

Получаем красивое подмножество: \{1; 6; 9; 14\}.

Если 6 и 14 не входят в подмножество, то красивое подмножество лежит во множестве \{1; 3; 5; 7; 9\}. Получаем красивые подмножества (две пары чисел с равными суммами): \{1; 3; 5; 7\}, \{1; 3; 7; 9\}, \{3; 5; 7; 9\}. Всего получилось 7 красивых подмножеств.

Ответ

а) да; б) нет; в) 7.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Рассказать друзьям

Лучшие онлайн-курсы для подготовки к ЕГЭ

Лучшие репетиторы для сдачи ЕГЭ

Комментарии

Задавайте ваши вопросы и помогайте друг другу в решении задач

Комментарии содержащие в себе рекламу, нецензурную лексику и не относящиеся к тематике сайта будут удалены